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In the present contribution we indicate the type of situations, seen from an
insurance point of view, in which financial models serve as a basis for providing
solutions to practical problems. In addition, some of the essential differences in
the basic assumptions underlying financial models and actuarial applications are
given.

1. INTRODUCTION

Many insurance problems, both for premium calculation as well as for the
determination of provisions, can be cast into the form of the evaluation of the
distribution of the quantity

t
A= [ e, M
0

where z(7) denotes a stochastic process and y(7) is a deterministic function.
This important quantity has been studied by several authors in the actuarial
literature as well as in the theory of stochastic processes (see [1-7]).
In case z(7) denotes a stochastic process starting in zero, hence z(0) = 0,
the interpretation of (1) is clear. Indeed, (1) can be written as
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A = /0 Yo (7) exp{— /OT(5dT0 + dz(71p)) }dr. (2)

From (2) it follows that A; is the discounted value of a continuous stream of
payments vo(7) through (0, ¢], discounted at an interest intensity I(7) defined
by

dI(t) = 61 + dx(7) (3)

In many applications, one assumes that z(7) denotes a Wiener process, starting
in zero, with variance o27. Remark that Wiener processes are always stationary
and have independent increments. Hence, in this case we have that for each
0 < 710 <7, (1) — x(7,) is normally distributed with expectation 0 and
variance o2(7, — 7). Further, for each positive integer n and for all 0 < 75 <
71 < ... < 7, the random variables z(m ), z(m2) —x(71), - .., x(7n) — (7n—1) are
independent.

The generating function of A; can then be written down explicitely by
considering a discretization of the Brownian motion with respect to the time
variable, by dividing the interval in n subintervals of length £ and subsequently
letting n tend to infinity. Following VANNESTE ET AL. [16] or DE SCHEPPER
[10], one obtains

A oo : 1 "
e = [ o ()
Foo ool 12 (zj41 — 3;)?
dx;ex - A A VA
/—oo /oo E I P 02 ]z::() 26 (4)

n—1
E ueyje 5,
i=0

where z; = z(je), v; = v(je).

Unfortunately, an analytical form of this generating function is known only
in a limited number of cases.

First, an analytic form is known for the generating function of a zero coupon
bond, where (1) = §(t — 7)e 9.

A second case with known analytic results follows from chosing (1) = e~°7.
In this case, one has that 7o (7) = 1 and A; = fot e~97=2(")dr can be interpreted
as a continuous annuity.

The following expression can then be derived for the probability density f;
of the annuity:

oo

4\/5 1 1 _ 82 22 L/ 25 2.2
— dz z

— € 202¢c2te o2z 2e o2z
T 03 \/tz?
0 (5)
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(see GEMAN et al. [9] and DE SCHEPPER [10]). From this expression we can
obtain the probability density of the perpetuity with random interest rate:

% =+
foo(T) = T:;_g) <%> <i> e o= (6)

which is the density function of an inverse gamma distributed random variable,
see DUFRESNE [1] and DE SCHEPPER ET AL. [4].

GEMAN and YOR [8, 9] also obtained expressions for the moments of the
distribution of A;(y(7) = e97), see also DE SCHEPPER [10]. These results can
be extended to the case where x(7) denotes an Ornstein-Uhlenbeck process
starting at zero, determined by the parameters o2 and a. In this case, an
expression for the moment generating function is given by

1 1
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(see DE SCHEPPER [10]).
In order to obtain the moments in an analytical form, the n integrations have
to be worked out. It is not clear yet how this can be done.

As mentioned above, the general problem of the evaluation of the distribu-
tion function of A; in case z(7) is a Wiener process has not yet been solved
and it seems to be a problem for which the corresponding case in mathematical
physics, namely the quantum theoretical approach to the time-dependent po-
tential V' (z,t) = v(t)e~?®, and the calculation of the corresponding kernel has
not yet been solved either. Therefore, the question arises if there are stochas-
tic processes for which the distribution of A; can be evaluated analytically
and which are still acceptable (or even more acceptable) for practical actu-
arial applications. Instead of considering the stochastic differential equation
dI(t) = §dr + o%dz(r) (where z is a standard Wiener process), we consider
a modified version, making the variance depend on I, e.g. by considering
dI(1) = (a + Be!M)dr + 20e!(D/2dz (7). Considering I = —21n.J, application
of It6 calculus results in

(07

dJ(r) = <—§J(T) + %(T)(Uz - 5)) dr — odx(r).

We have to consider fot v(7)J?(7)dr, hence in case the stochastic term odz(7)
is put equal to zero one obtains for the deterministic path

/Oty(f) [e—m (1 - "tﬂ) + ”2;[3} dr.
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2
Let z = %, then in the deterministic case one obtains

(1-2) /Ot v(r)e “Tdr + Z/Oty(v')dv',

which is a credibility average between the nominal and discounted value of the
payments v(7).
Consequently we have to evaluate

+o0 1 "
—uAsy — i
BE(emuA) = /0 den lim (m) f(u)

+oo +oo, 4

n—1
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n—1 n—1
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J 72 Vit
=0 J =0

for a suitable choice of f. The (n — 1)-fold integrations can be worked out to
give

where 7(t) and ((t) are solutions of i’(t) = (a + uy(7))v(7) such that 5(0) =
0,7(0) = 1,¢(0) = 1,¢(0) = 0, see VANNESTE ET AL. [16].

An inversion with respect to u leads to an expression for the density of the
quantity A;. Although the known analytical results for the density of A; are
limited, this problem deserves a lot more attention because it can be applied in
many situations arising in actuarial practice. In the subsequent sections of the
paper we aim at presenting some of the situations in which the distribution of
A; is important.

2. A PURE FINANCIAL APPLICATION

In an Asian option, the payoff is defined in terms of the average value of the
underlying asset during a certain time period rather than in terms of its final
value.

The exact pricing of Asian options is clearly a difficult exercise because
the distribution of an arithmetic average of stock prices is unknown (and in
particular not lognormal) when prices themselves are lognormally distributed.

Options based on average prices is an attractive feature for thinly traded
assets and commodities where price manipulations near the option expiration
date are possible. Some options on domestic interest rates exhibit the Asian
feature when the base rate is an arithmetic average of spot rates.

Let S(u) be the stock price at time u. The payoff of the Asian call option
at maturity ¢ is then given by
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It can be proven that under certain assumptions (see e.g. GEMAN ET AL. [9)]),
the Asian option pricing problem is solved if the following quantity can be
determined:

t
E'(/ 6207+2x(r)d7_ _ l])+ (8)
0

where z(7) is a standard Brownian motion starting from 0, and ¢ and v are
real numbers, depending on the parameters involved. In order to cast this
expectation into an analytical form, the distribution of f(f e2*(")dr has to be
evaluated. This evaluation can be done by using the result displayed in formula

(5)-

3. AN APPLICATION FOR LIFE INSURANCE PREMIUMS

A frequently used law for modelling the mortality intensity u, in life insurance
is the so called Makeham law which states that

pa = +yc” 9)

where the probabilistic interpretation is immediate. This model is valid in
case mortality is a static characteristic. In case mortality changes in time, an
extension of the model could be obtained by modelling the probability that a
person is alive at x + t given that he is alive at = by

e = g, (10)

A continuous life annuity can then be cast into the form
t
Ay ((7) = eFrge" (€ =1) = /e—gr+z(r)gcw(cf—1)e—ar—y(r)d7_ (11)
0

It is clear that the stochastic effect is now the result of z(7) —y(7). While it can
be argued that y(7) is a pure interest stochastic process and should therefore
satisfy the usual assumptions on the term structure of interest as e.g. explained
in Cox, INGERSOLL and Ross [11], it is clear that the combined effect of z(7)
and y(7) satisfies other basic assumptions.

We notice that in practice, c¢ is close to 1. Consequently, the right hand
side of (11) could be approximated by means of

t
/67(B+6+Cm In g In c)‘rez(‘r)*y("')d/r‘ (12)
0
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Following BEEKMAN ET AL.[6], the expectation and the variance can be ob-
tained in the case that

F(r) = e*(M=v(n),
with

dF(r) = %F(T)dr + F(r)dw(r),

where w(7) is a Brownian motion. Taking a drift term proportional to 1/2F (1)
ensures us that the average interest intensity is equal to zero. In our present
model the same can be obtained by changing ¢ in (12) into é + 1/2 and con-
sidering

dF (1) = F()dw(7). (13)

A pure actuarial motivation for changing ¢ in § + 1/2 (in case 02 = 1) is
found e.g. in GERBER and SHIU, see ref. 13-15. They introduced the Esscher
transform in order to obtain a risk neutral valuation principle (or what is
the same, they used an equivalent martingale measure defined by the Esscher
transform).

Let S(t) denote the price of a stock at time ¢. Let the interest intensity be
described by a process {z(t)}+>0 with stationary and independent increments
with z(0) = 0, such that S(0) = S(t)e *!). As an example they consider z(t)
a Wiener process with mean u and variance o2 per unit time. Then F(z,t) =
N (z; ut; 0?t) with generating function M (z,t,) = exp { (—uz + #) t} . The
Esscher transform has as generating function M (z,t,h) = M (z+ h,t)/M (h,t).
Hence the distribution of the Esscher transform reads

F(z,t,h) = N(z,ut + ho’t,o’t).

In order to obtain a risk neutral valuation principle, h (the Esscher parameter)
is selected to have S(0) = E*(e~°tS(t)) where * indicates that the expectation
is done with respect to the Esscher measure.

4. AN APPLICATION TO PENSION FUND CALCULATIONS

In a pension fund there are two essential streams of cash flows, namely pensions
have to be paid out (eventually capitals at the retirement date) and contribu-
tions come in. This payment streams can be visualised on the following time
axis

pensions: —-P(0) —-P(1) —P(t)
contributions: +C(0) +C(1) +C(t)
time: 0 1 t

where we consider a time horizon ¢.
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In the sequel, we assume that pensions and contributions are paid continu-
ously through time. The total amount of pensions paid at time ¢ is denoted by
P(7), while the the total amount of contributions at time 7 is given by C(1).

We assume that the total number of active persons (= the contribution
paying persons) and the total number of retired persons (= the persons who
receive pensions) at time 7 are both proportional to (") where k(7) denotes
some stochastic process to be specified. Further, it is assumed that the salary
income at time 7 is proportional to e*(") where s(7) denotes some stochastic
process also to be specified. We also assume that pensions increase with the
same intensity s(7) as the salaries. We assume that the contributions at any
time are defined as a fixed percentage of the salary income at that time. Hence,
the contributions at time 7 are also proportional to (7).

The total contribution function C(7) and the total pension function P(7)
are then modelled by

C(1) = ¢(r)ek(n+s(r)]
P(r) = p(r)er)Fslm),

where ¢(7) and p(7) are given deterministic functions of time.
The value at the evaluation date 0 of the net-income of the pension fund at
time t is then given by

e(7) = plr))eH) o))

where z(7) is the stochastic process describing the interest intensity. The total
value of the fund, evaluated prospectively as the discounted future income
minus the discounted value of the pensions to be paid on a time horizon (o, t),
is then given by

[t = popeko ==y (14

It is clear that, although the same type of expression is obtained as in (1) with
x(7) replaced by the combined effect of k(7)+s(7) —x(7), the stochastic process
to be assumed for this resulting intensity not necessarily satisfies the same
basic hypotheses of pure financial models. The main difference is that while
in financial theory interest is supposed not to become negative the resulting
intensity certainly can become negative. It is sufficient to have a firm with a
decreasing number of new entrants to the fund to have a negative k, so that it
is possible that a negative global intensity occurs.

In order to cope with this situation we could consider a stochastic process
z(7) derived from the Lagrangian

(e7%(2)* + ae ** + Be*) , (15)

N | =
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as explained in DE VIJLDER ET AL. [15]. In that paper, the distribution of
Ay = f(f v(T)e~2*Wdr is evaluated by means of its Laplace transform
o ORI
_ t n(t) _ _ e ”
E uAy — dr—— S\ INY 2 :t/2[
e [ drgsem (g5 -G Gy

where 1 and (¢ are the solutions of the differential equation ¥(0) = (a +
uy(6))v(d) subject to some boundary conditions, see VANNESTE ET AL. [16].
Performing an inversion with respect to u leads to an expression for the density
of At-

5. RESERVING IN LIABILITY INSURANCE

For the unpaid losses, an insurance company will create a loss reserve, often
called IBNR reserve. To estimate this reserve correctly is very important.
Therefore, there have been developed several methods to estimate the IBNR
reserves. Consider a run-off triangle with average loss figures X, representing
the size of claims incurred in year of origin j and to be paid in development
year s, divided by the estimated number of claims. One of the methods used
to estimate future values of these losses X is the separation method where

st = Xj+sfl7gs

with A describing the evolution per calendar year (e.g. allowing for inflation)
and where r; can be interpreted as fractions of claims finalized in their s-th
development year, where j and s are integers. In fact, we will consider the
following run-off triangle which is modeled by the parameters r and A:

Year of development Year
origin 1 2 e t—1 t
1 T1 )\1 7“2)\2 . Tt—1>\t—1 Tt)\t

2 T1>\2 T‘2>\3 N Tt71>\t

t—1 TlAt,1 T‘2>\t
t ’I"1>\t

We assume that A; and r, are estimated by the separation method or by some
lognormal model for s < t. For expectations of future losses X;, we need
estimates for the future values of A\;. In classical methods these future values
have been determined by extrapolation or by exogenous estimates for inflation
year by year. This means that j and s are integers (considering a discrete basis)
such that the loss reserves are considered to be constant during a year.

Now, we will indicate how this methodology can be extended in a continuous
way. Therefore, we assume that these values can be described by

—2z(r+7'—t
>\T,T’e ( )7
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where (7 +t' — t) is a stochastic process denoting the fluctuations of A and
where

At = T‘[t']+1>\[6+6']€_6(6+61_t)7
where as usual [k] denotes the largest integer smaller than k. The subindex ¢
is related to the time of origin (somewhere between j and j+ 1) and ¢’ denotes
the development time (between s and s+ 1). It is clear that for 0 < 7 <t and
0 < 7' <t—7 the losses X; 5 are known where for 0 <7 <tandt—7 < 7' <t,
the realizations of X; 4 or their discounted values have to be estimated.

Our aim is the evaluation of the distribution of the reserve V; given by

t
V}:/dT
0

By transformation of time, V; can be cast into the following form:

t
/ dT’AT T,e—2x(7'+‘r’—t) )

t—1

T

t t
Vi= [dr [ars s e ar = [ REe ar,
0 0 0

having interchanged the order of integration, and where

t
R(T”) = />\T,T”—T+td7—

denotes a deterministic function of 7", for which we can use the separation
method to estimate the amount by:

t

Z T[T”]+t—kX[T”]+t—1676[TII].
k=[r"]

As said before, we need a stochastic process x(7) measuring the randomness of
the rate of return, for which we may assume that the following properties are
fulfilled:

1. a negative rate of return is allowed although exceptional because the rate
of return is the result of inflation like effects and other stochastic growth
factors;

2. the variance of the rate of return increases when the rate of return itself
increases;

3. extreme values of the rate of return are unlikely.

It is clear that the stochastic correction can also be introduced along the other
dimensions of the problem (e.g. development year, year of origin or calender
year but taking into account other factors than inflation).
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Again the process derived from the Lagrangian given in (15) can be used

to obtain the distribution of the reserve.
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